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A two-dimensional model for the flapping of an elastic flag under axial flow is
described. The vortical wake is accounted for by the shedding of discrete point vortices
with unsteady intensity, enforcing the regularity condition at the flag’s trailing edge.
The stability of the flat state of rest as well as the characteristics of the flapping modes
in the periodic regime are compared successfully to existing linear stability and experi-
mental results. An analysis of the flapping regime shows the co-existence of direct
kinematic waves, travelling along the flag in the same direction as the imposed flow,
and reverse dynamic waves, travelling along the flag upstream from the trailing edge.

1. Introduction
A fluttering instability can develop from the interaction of the internal dynamics of

an elastic structure and an axial flow. The flapping of wind-forced flags is a canonical
example of such an interaction problem, which is also of interest in various other
engineering (Watanabe et al. 2002) and medical applications (Huang 1995; Balint &
Lucey 2005). This instability arises from the competition between the destabilizing
effect of the aerodynamic pressure and the stabilizing effect of the (small) bending
rigidity of the structure.

The fluttering flag instability has been the focus of a large number of experimental
studies including soap-film (Zhang et al. 2000), water-tunnel (Shelley, Vandenberghe &
Zhang 2005) and wind-tunnel experiments (Eloy et al. 2008). Recently full numerical
simulations of the coupled fluid and solid dynamics have been carried out using
immersed-boundary methods (Zhu & Peskin 2002) and coupled fluid–solid solvers
(Connell & Yue 2007). The latter study identified three possible behaviours for the
flag: stable and flat, periodic flapping, and chaotic.

To understand the onset of the instability, several papers have focused on the
linear stability of the flat position. The two-dimensional linear stability of infinite
membranes under axial flow was first studied by Rayleigh (1878). More recently,
Kornecki, Dowell & O’Brien (1976) carried out a linear stability study of the two-
dimensional problem, modelling the wake behind a finite-length clamped plate as a
distribution of vorticity (see Eloy et al. 2008, with increased numerical resolution).
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Figure 1. Vortex shedding behind a flapping flag. The oncoming flow is horizontal and
vortices are shed from the trailing edge. The last vortex has unsteady intensity, the other
vortices have frozen circulation.

Eloy, Souilliez & Schouveiler (2007) carried out a linear stability analysis including
three-dimensional effects.

The purpose of the present work is to propose a reduced-order model for the
flow over the flag, able to obtain the long-time behaviour and finite-amplitude
flapping. It also reproduces the main characteristics of the problem as observed in full
numerical simulations and experiments while significantly reducing the computational
complexity. A potential flow representation is used for the two-dimensional flow past
an infinitely thin inextensible elastic strip of finite length. The wake is represented
by discrete point vortices, unlike the vortex sheet representation described in
Alben & Shelley (2008). Here, the intensity of the last point vortex shed is adjusted in
time to satisfy the regularity of the flow velocity at the trailing edge (Brown–Michael
vortex) and a new vortex is shed when the previous one reaches a maximum intensity
(Cortelezzi & Leonard 1993; Michelin & Llewellyn Smith 2008).

2. Model
A two-dimensional model of a flapping flag is considered. The flag is inextensible

and clamped at its fixed end; L, B and ρs are respectively its length, bending
rigidity and mass per unit length. The surrounding fluid density is ρ, and a uniform
horizontal flow at infinity U∞ is prescribed. In the following, all quantities are non-
dimensionalized using L, U∞ and ρ as reference values. Positions and velocities are
defined with respect to a fixed system of axes with origin at the clamped end of the
flag.

2.1. Solid model

A finite-displacement inextensible Euler–Bernoulli beam model is considered. The
position of the flag is ζ (s, t) (0 � s � 1 is the arclength), and θ(s, t) is the angle
between the local tangent and the horizontal axis (see figure 1). Using the Euler–
Bernoulli assumption for a slender beam (M = −ηθs with M the elastic torque along
the flag and η the non-dimensional bending rigidity), and defining T (s, t) to be the
tension along the flag, Newton’s second law and the inextensibility condition become

μζ̈ = [eiθ (T − iηθss )]s − i[p]±eiθ , ζs = eiθ (2.1)

where a subscript s stands for ∂/∂s and dotted variables for ∂/∂t , with clamped-free
boundary conditions:

ζ (0, t) = θ(0, t) = 0, θs(1, t) = θss (1, t) = T (1, t) = 0. (2.2)

This model is equivalent to the one used in Alben & Shelley (2008). Here μ = ρs/ρL

and η = B/ρU 2
∞L3 are respectively the non-dimensional flag density and bending

rigidity, where
√

η is also the time-scale ratio of the response to the pressure forcing
and the bending stiffness. For comparison purposes with the linear stability results
of Eloy et al. (2008) we will also use in the following the alternative non-dimensional
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parameters

M∗ =
1

μ
=

ρL

ρs

, U ∗ =

√
μ

η
= U∞L

√
ρs

B
. (2.3)

U ∗ is the free-stream velocity non-dimensionalized by the flag rigidity and inertia.

2.2. Vortex shedding model

The flow around the flag is assumed to be irrotational. To satisfy the regularity
condition for the flow at the trailing edge, point vortices are introduced following
the method suggested by Cortelezzi & Leonard (1993) and Cortelezzi (1996) for the
prescribed flow over fixed semi-infinite and finite plates, and applied in Michelin &
Llewellyn Smith (2008) to the coupled motion of a falling card and the surrounding
fluid. In this approach, one point vortex with unsteady intensity is released from each
shedding corner. At each time step, the intensity is adjusted so as to satisfy the regular-
ity condition: the flow velocity w must remain finite at the trailing edge. These vortices,
with position zn and intensity Γn, are also known as Brown–Michael point vortices
(Brown & Michael 1954; Rott 1956), and obey the modified equation of motion

żn + (zn − zn,0)
Γ̇n

Γn

= w̃n, (2.4)

where the overbar denotes the complex conjugate. The second term accounts for the
conservation of fluid momentum around the vortex and associated branch cut, and
w̃n is the desingularized flow velocity at the vortex position (Saffman 1992).

When a vortex reaches maximum intensity, the intensity of this vortex is frozen
and a new vortex is started from the shedding corner. Because the angle of attack
is always small in this problem, vortex shedding is neglected at the leading edge and
vortices are shed from the trailing edge only. Therefore at any time, the vortex wake
consists of N − 1 vortices (zj (t), Γj ) with steady intensity and one unsteady point
vortex (zN (t), ΓN (t)).

2.3. Fluid model

The potential flow around the deformable flag can be solved by representing the
infinitely thin flag as a bound vorticity distribution κ (Jones 2003; Shukla & Eldredge
2007; Alben & Shelley 2008). The complex fluid velocity is the superposition of a
uniform flow at infinity, and the contribution of the vorticity distribution (bound
vortex sheet for the flag and point vortices for the wake):

w = U∞ +
1

2πi

[∫ 1

0

κ ds

z − ζ (s, t)
+

N∑
j=1

Γj

z − zj

]
.

Using the Plemelj formula and following Shukla & Eldredge (2007), the normal flow
boundary condition on the flag Im[e−iθ (w̄ − ζ̇ )] = 0 becomes a Fredholm singular
integral equation for κ . Assuming the system is started from rest, the total circulation
at infinity must vanish at all time (Kelvin’s circulation theorem). Together with the
regularity condition w(ζ (1, t), t) �= ∞, these two conditions can be rewritten as a
system of equations for κ and the intensity ΓN of the last shed vortex (the others are
known and frozen):

1

2π
−
∫ 1

0

Re

[
eiθ(s0)

ζ (s0) − ζ (s)

]
κds = Im

[
eiθ(s0)

(
U∞ +

1

2πi

N∑
j=1

Γj

ζ (s0) − zj

− ζ̇

)]
, (2.5a)

∫ 1

0

κ ds +

N∑
j=1

Γj = 0, κ(1, t) = 0, (2.5b)
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where the integral on the left-hand side of (2.5a) is understood as the principal value.
Note that because of the Cauchy-like form of the kernel in (2.5a), the first condition
in (2.5b) is necessary for the problem for κ to be well-posed.

The desingularized velocity w̃n in (2.4) is

w̃n = U∞ +
1

2πi

[∫ 1

0

κds

zn − ζ (s, t)
+

∑
j �=n

Γj

zn − zj

]
. (2.6)

The initial position of the vortex at the corner of the solid induces a singularity
in (2.6). A small-time expansion of the vortex position can be performed following
Cortelezzi & Leonard (1993) and Michelin & Llewellyn Smith (2008) and the resulting
analytic small-time solution is used for the first time step of each new vortex.

From Bernoulli’s theorem, the pressure jump across the flag is

[p]±(s0) =

∫ s0

0

κ̇ ds + κ(s0)wp(s0), (2.7)

with wp the average of the relative tangential fluid velocities on either sides of the
flag (Jones 2003; Alben & Shelley 2008)

wp(s0) = Re

[
eiθ(s0)

(
1

2πi
−
∫ 1

0

κ(s)ds

ζ (s0) − ζ (s)
+ U∞ −

N∑
j=1

iΓj

2π(ζ (s0) − zj )
− ζ̇ (s0)

)]
.

2.4. Numerical method for the flag problem

A system of equations for θ and T alone can be obtained by combining both equations
in (2.1):

Tss − θ2
s T = −[p]±θs − 2ηθsθsss − ηθ2

ss − μsθ̇
2, (2.8a)

μsθ̈ = −[p]±
s − ηθssss +

(
T + ηθ2

s

)
θss + 2Tsθs. (2.8b)

Determining the flag position as ζ (s, t) =
∫ s

0
eiθds ′ automatically satisfies the

inextensibility condition. Then the boundary conditions are obtained from (2.2) and
Newton’s second law applied to the whole flag as

θ(0, t) = θs(1, t) = θss (1, t) = T (1, t) = 0, (2.9a)

μs

∫ 1

0

∫ s

0

eiθ (iθ̈ − θ̇2)ds ′ds = −T (0) + iηθss (0) − i

∫ 1

0

[p]±eiθds. (2.9b)

Expanding θ as a superposition of Chebyshev polynomials θ =
∑

cj (t)Tj (2s − 1),
(2.4), (2.5), (2.7) and (2.8) are used to integrate cj and (zn,Γn) in time using a
second-order-accurate finite-difference scheme. The fourth-order derivative in space
in (2.8b) is treated semi-implicitely and all nonlinear terms in (2.8) are evaluated
explicitely. Chebyshev spectral methods are particularly adapted to handle the square-
root singular behaviour of the general solution of (2.5a) near s = 0 and s = 1. From
(2.4), (2.6) and the time derivative of (2.5), Γ̇N , żn, κ̇ and therefore [p]± depend
on θ̈ linearly. In (2.8), the contribution of the solid acceleration to the pressure
(added inertia) can be isolated to compute c̈j directly, thereby greatly reducing the
computational cost in comparison with other methods which require an iterative
solver at each time-step of the fluid–solid problem (Alben & Shelley 2008). The
second-order accuracy of the solver was checked using (2.1) and the conservation of
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Figure 2. Instantaneous streamlines for the flow over the flapping flag in the periodic regime
for M∗ = 3 and U ∗ = 11.5. The grey lines are the streamlines. For reference, the successive
positions of the flag in a flapping cycle are plotted as black dashed lines.

the flag energy:

Ė = Wp, with E =

∫ 1

0

[
1

2
μ|ζ̇ |2 +

1

2
ηθ2

s

]
ds, Wp = −

∫ 1

0

[p]±Im[ζ̇e−iθ ] ds. (2.10)

3. Results
The flag is initially at rest (θ(s, t < 0) = 0) and at t =0 the horizontal flow at infinity

is ramped up continuously to its long-time value. A small transient vertical perturb-
ation is added to perturb this trivial equilibrium (of the form v = εtpe−qt ; different
values of p and q were tested with no significant impact on the long-time behaviour).
In each run, the rigidity and inertia of the flag are fixed, and the flow at infinity can
be varied inducing a change of the non-dimensional velocity U ∗ defined in (2.3).

3.1. Three possible regimes

For a given inertia ratio M∗, three regimes were observed. For small U ∗ (low wind
speed), the initial perturbation creates a small motion of the flag that quickly decays,
and the flag returns to its rest position.

When U ∗ is increased above a critical value U ∗
c (U ∗

c =9.6 for M∗ = 3), this rest
position becomes unstable. For intermediate values of U ∗ (9.6 � U ∗ � 12 for M∗ = 3),
a periodic flapping develops after a transient regime, in which the energy of the
flag oscillates with an exponentially growing envelope. One point vortex is shed
during each half-stroke and the intensity of the point vortices have alternating signs.
Downstream from the flag (about one flag length), these point vortices arrange in
a weak von Kármán street and are advected with U∞ close to the horizontal axis
(figure 2). This is in good agreement with the positioning of the centres of vorticity in
the vortex sheet approach (Alben & Shelley 2008). This situation differs significantly
from thrust-generating flapping, where the vortices are advected faster due to their
reversed von Kármán arrangement.

The motion of the flag in this flapping regime is highly periodic. The power spectra
of the flag total energy (2.10) and tail orientation θ(1, t) display sharp peaks (see the
left-hand column of figure 3a, b). Note that the orientation spectrum contains only
odd harmonics (ω0, 3ω0 . . .) while the energy is a quadratic function of the kinematic
variables and its spectrum only contains the even harmonics (2ω0, 4ω0, . . .). In the
phase plot of the flag tail position, the outgrowing spiral corresponds to the instability
development from the initial rest position, and convergence to a limit-cycle is clearly
seen for U ∗ � 12 (centre column of figure 3). The decreasing number of oscillations
(or spiral turns) shows an increase of the instability growth rate with U ∗ − U ∗

c . The
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Figure 3. Left: frequency spectrum of the solid energy E (solid) and of the tail orientation
θ (1, t) (dashed) normalized by their maximum values for clarity. Centre: tail vertical velocity
vs. tail vertical displacement phase plot. Right: time variations of the horizontal force on the
flagpole. M∗ = 3 and (a) U ∗ = 10, (b) 12, (c) 13 and (d) 15.

horizontal force applied by the flag on its attachment pole at s =0 also shows this
strong periodicity (right-hand column of figure 3a, b).

When the flow velocity is increased further, the periodicity breaks down. The tail
trajectory in the phase diagram shows a weaker limit-cycle behaviour at U ∗ = 13
and periodicity is lost at U ∗ = 15 (see centre column of figure 3). A transition from
a discrete energy spectrum (figure 3a, b) to a broadband spectrum (figure 3c, d) is
observed. This strong unsteadiness, also observed for the force on the flagpole, leads
to snapping events (large acceleration of the flag tail) inducing peak values of the
force on the flagpole of up to ten times its mean value in the flapping regime (see
right-hand column of figure 3d).

3.2. Comparison with linear stability results

For a given M∗, the critical velocity U ∗
c above which the rest state of the flag becomes

unstable is computed. The corresponding critical curve is plotted in figure 4 in both
the (M∗, U ∗) and (μ, η) planes for comparison with previous studies. We also plot for
reference the results from the linear stability analysis (Kornecki et al. 1976), which
have been presented and confirmed experimentally in Eloy et al. (2008).
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Figure 4. Critical curve for the stability of the flag state of rest using the present point
vortex model (solid) and linear stability analysis presented in Eloy et al. (2008) following the
method of Kornecki et al. (1976) (dashed). The same critical curve obtained using the vortex
sheet approach (Alben & Shelley 2008) is plotted (dotted) for comparison. (a) (M∗, U ∗) space,
(b) (μ, η) space.
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Figure 5. Flapping mode observed for different values of the inertia ratio: (a) M∗ = 0.5,
U ∗ = 9; (b) M∗ = 3, U ∗ = 12; (c) M∗ =10, U ∗ = 12. The position of the flag is plotted every
Δt = 0.04.

We observe that the present point vortex method matches very well the stability
region predicted by the linear analysis, particularly the existence of several branches
corresponding to different mode structures, and does significantly better than the
vortex sheet model which underpredicts the critical velocity U ∗

c .

3.3. Flapping modes

As experimentally observed by Eloy et al. (2008) and predicted by the linear stability
analysis, each branch of figure 4 corresponds to a different mode structure: the first
branch (M∗ < 1) corresponds to mode 2 (one neck), while the second (1 <M∗ < 7)
and third (8<M∗) correspond respectively to mode 3 (two necks) and mode 4 (three
necks). This mode structure is observed in the large-amplitude flapping results of our
model (see figure 5). The flapping mode structure seems to be determined by the
most linearly unstable mode. Several other forms of initial perturbations have been
tested to try to trigger a different mode (in particular transient periodic forcing at the
desired frequency) without any change in the resulting dominant mode structure in
the permanent regime.

3.4. Hysteresis behaviour

Experimental studies on flapping flags have pointed out the hysteresis behaviour of
the flag when the velocity of the flow at infinity is varied (Zhang et al. 2000; Shelley
et al. 2005; Eloy et al. 2008). Starting from rest, the flag remains straight until the
critical velocity U ∗

c1 is reached, at which point a periodic flapping of large amplitude
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Figure 6. Hysteresis behaviour at M∗ =10: horizontal force on the flagpole (solid) and
horizontal velocity of imposed flow (dashed). The critical velocity U ∗

c1 = 10.1 is plotted for
reference (dotted). Initially, when U ∗ <U ∗

c1 the initial perturbation is damped exponentially.
Flapping develops when U ∗ is increased above the critical value. When U ∗ is then gradually
reduced, it is possible to maintain a flapping state until U ∗ = U ∗

c2 = 9.6 < U ∗
c1. If U ∗ is further

decreased, the flapping amplitude decreases exponentially (not shown).

develops. However, if the flow velocity is subsequently reduced, large scale flapping is
maintained until U ∗ = U ∗

c2, with U ∗
c2 <U ∗

c1.
Such behaviour is observed here (figure 6). The width of the hysteresis cycle

(∼4.5%) is comparable to that observed in Alben & Shelley (2008), but much smaller
than that observed in the experiments (∼20% for Eloy et al. 2008). Alben & Shelley
(2008) suggested that dissipative effects of viscosity or structural damping can be at
the origin of these discrepancies.

3.5. Travelling waves along the flapping flag

This section focuses on the flapping regime that develops at intermediate velocity
U ∗ and studies the propagation of waves along the flag in that regime. Empirical
orthogonal functions (EOFs) (also known as proper orthogonal decomposition)
are used to decompose a signal f (s, t) into a superposition of normal modes
f (s, t) =

∑
an(t)bn(s). The modes’ spatial and temporal structures are such that,

when truncated at any order, the root mean square of the residue is minimized
(Wallace & Dickinson 1972). The complex empirical orthogonal function (CEOF)
decomposition is well-suited to identify moving patterns. The EOF decomposition is
applied to the complex function F = f + if H where f H is the Hilbert transform of f

(see Barnett 1983, for more details). We have

f (s, t) = Re

[ ∑
n

An(t)B̄n(s)

]
=

∑
n

an(t)bn(s) cos(ψn(t) − φn(s)) (3.1)

where An = ane
iψn and Bn = bne

iφn can be obtained from the singular value decom-
position of the discrete representation of F . The advantage of this method becomes
apparent when this decomposition is applied to the flag problem: for example, for
M∗ = 10 and U ∗ = 11, θ can be represented by its first CEOF with a root-mean-square
error of less than 1%. The spatial amplitude b gives the shape of the mode considered,
and the temporal amplitude a gives the temporal fluctuations of the mode amplitude.
In the highly periodic regimes considered here, a is very close to a constant.

We are most interested in the phase functions ψ and φ whose variations are shown
in figure 7 for the first mode of the orientation, pressure force and normal elastic
force in the periodic flapping regime. The temporal phase ψ is a linear function with
a slope equal to the fundamental frequency ω0 of the mode and the spatial phase
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Figure 7. Temporal (left) and spatial (right) variations of the phase of the first CEOF in the
flapping regime at M∗ = 10 and U ∗ = 11, for (a) the orientation of the flag θ (s, t) and (b) the
local pressure force (dash-dotted) and the normal component of the elastic forces in the flag
(dashed). The range of t used covers about 16 periods of the flapping regime. ψ̇ > 0, therefore
monotonic variations of φ and φs > 0 (resp. φs < 0) indicate a wave travelling to the right
(resp. left).

φ has a linear trend away from the clamped corner, suggesting the propagation of
waves along the flag. A phase speed in s can be defined from (3.1) as c(s) = ψ̇/φs .
Because of the flag deformation, c(x), the wave speed in x, is of the same sign and
|c(x)| < |c(s)|.

For the orientation angle θ , c(s) > 0 and the corresponding c(x) is close to U∞: the
deformation wave is created and advected by the outside flow. We refer to this wave as
the direct kinematic wave, as all the kinematic fields (orientation, position and velocity)
follow the same pattern. A horizontal wave speed not greater than U∞ in this passive
drag-producing configuration is consistent with the work of Lighthill (1960), where
thrust production is associated with deformation waves travelling faster than U∞.

However, we observe that the pressure and normal elastic forces in the flag have the
form of a wave travelling upstream from the trailing edge where vorticity shedding
prescribes the pressure jump as (2.7) simplifies at the trailing edge to [p]± = −Γ̇N (fig-
ure 7). This pressure disturbance is carried upstream along the flag by its elastic rigid-
ity. Note that this reverse dynamic wave travels slower than the direct kinematic wave
propagates downstream. A similar behaviour was observed for the tension in the flag.

4. Conclusions
We have shown that the unsteady point vortex model is able to reproduce both

qualitatively and quantitatively the physical characteristics of the flapping of a
flexible flag. The use of point vortices rather than full vortex sheets removes several
computational issues due to the kernel singularities in the advection of free vortex
sheets, and significantly reduces the computational complexity and cost.

The stability of the flag’s state of rest and the structure of the flapping modes
were studied and found to be in very good agreement with the analysis of Kornecki
et al. (1976), which has been compared by Eloy et al. (2008) to experimental results.
An analysis of the flapping regime showed the existence of direct kinematic waves
(orientation, position and velocity) travelling with the same direction and velocity
as the imposed flow, and the existence of reversed dynamic waves (pressure jump
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and elastic force) travelling in the opposite direction and carrying upstream from the
trailing edge the pressure change induced by the vortex shedding. The dynamics of
these waves, including the influence of M∗ and U ∗, will be explored further in follow-
on work. The present model can be extended to study flapping structures tethered
to massive substrates (e.g. botanical applications). Future work will also include the
study of two parallel flags as described in Zhang et al. (2000) to understand the
coupling between the two flags and its influence on the stability and mode structure.
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RGY 0073/2005. The authors are grateful to Professors G. R. Ierley and E. Lauga
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